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In an era where personalised education is increasingly pivotal, the integration of adaptive learning 

technologies has emerged as a transformative force in the realm of e-learning. Traditional educational 

approaches often fail to cater to the diverse needs of individual learners, resulting in a one-size-fits-all model 

that leaves many underserved. Recognising these limitations, the development of a q-learning-based model 

introduces a sophisticated mechanism to tailor course content to each students unique learning style, 

preferences, and pace. By leveraging reinforcement learning techniques, this model dynamically adjusts the 

sequence of instructional material, enhancing engagement and optimising knowledge retention. The new 

system leverages reinforcement learning techniques to autonomously adapt to user behaviour, delivering 

tailored content aimed at fulfilling learning objectives based on the feedback received, whether affirmative or 

negative. Functioning as an intelligent agent, the system scrutinises user interactions and selects the most 

suitable responses to enhance the overall learning experience. The primary goal of this research is to create a 

dynamically adaptive e-learning system utilising reinforcement learning methodologies. The reinforcement 

learning algorithms entail making targeted decisions that yield varying rewards, with each knowledge 

component associated with a specific reward based on its relevance. These algorithms are grounded in the 

principles of Markov decision processes, which encompass a set of actions and the probabilities of transitioning 

between different states. Within this Markov decision process framework, both a reward function and a 

transition function are defined. The core function of the proposed system is to recommend learning pathways 

by concurrently considering sequential behaviour, learning styles, activities, materials, difficulty levels, 

feedback, preferences, competencies, and knowledge levels, employing the q-learning algorithm. The optimal 

path for the active learner in the course used for the implementation is 𝑠0 → 𝑠1 → 𝑠6 → 𝑠9. The proposed 

system identifies the study trajectory favoured by learners for a particular course. The results demonstrated 

that after 200 iterations, the performance of the q-learning algorithm exceeded that recorded after 100 

iterations. The success rate is 60.86% and 70.82& for 100 and 200 iterations respectively while the optimal 

course selection path training time is 10 and 8 for 100 and 200 iterations respectively.

1. INTRODUCTION 

The proliferation of online courses has complicated the 

decision-making process for learners seeking to identify 

the most suitable options for their educational needs, 

which has, in turn, negatively impacted their learning 

outcomes. Recently, the development of personalised 

course recommendations has emerged as a significant area 

of research aimed at mitigating the challenges posed by 

information overload. The growing focus on customised 

and flexible learning experiences by educational 

institutions is expected to facilitate an increased 

integration of artificial intelligence (AI) within remote 

learning environments. AI-driven technologies will enable 

students to access and enrol in programs or courses from 

any location globally. 

Various methodologies are employed to assess the e-

learning behaviours of students, with particular attention 

to the adaptability of recommender systems. By 

incorporating time series data into the adaptive 

framework, the recommendation process can be improved 

by aligning the learning behaviours of the target learner 

with the academic performance and study patterns of 

comparable learners. The vast array of available resources 

has rendered the selection of appropriate educational 

materials from numerous academic tools increasingly 

challenging. One viable approach to address this issue is the 

implementation of a personalised recommender system 

based on reinforcement learning (RL). Such systems can 

alleviate the problem of information overload by delivering 

engaging content tailored to the user's preferences. 

Typically, recommendation algorithms utilise multiple data 

sources to suggest potential items to users. In real-world 

applications, these systems generate recommendations 

based on the history of user-item interactions and 

incorporate user feedback to refine their suggestions. 

Alternatively, the recommender system seeks to discern 

users' interests through their interactions and propose 

products that may resonate with them. The initial studies on 

recommendations primarily focus on developing content-

based and collaborative filtering techniques to achieve this 

objective. 

Historically, recommendation systems have utilised 

collaborative-based filtering techniques to derive implicit 

feedback that reflects a learner's preferences [4,7]. 
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However, recent advancements in neural recommendation 

algorithms leveraging deep learning have outperformed 

these traditional methods [6,9]. One notable model is the 

neural attentive session-based RS, which emulates users' 

sequential behaviours and deduces their primary 

objectives from learning patterns [8]. Furthermore, the 

foundational recommendation system, designed to reduce 

irrelevant courses, is based on an attention network and a 

profile reviser, both developed simultaneously through a 

hierarchical RL approach [13]. Nonetheless, the 

effectiveness of course recommendations can be enhanced 

when students are enrolled in multiple courses, as 

hierarchical RL often overlooks the explicit needs and 

implicit preferences of students, potentially resulting in 

inadequate recommendation outcomes. While these 

techniques can provide course recommendations to a 

degree, they commonly fail to account for the evolving 

preferences of users throughout their sequential learning 

experiences. Additionally, they may not accurately reflect 

a user's preferences for specific content, particularly when 

these preferences shift over time across various courses. 

Consequently, these methods struggle to deliver the 

necessary adaptability in recommendation systems, 

especially in monitoring the dynamic changes in users' 

preferences. Traditional recommendation systems also 

contend with the issue of data sparsity in practical 

applications, where only a limited selection of course 

materials appears in a user's list of highly-rated or studied 

courses. To effectively retrieve learning materials that 

align with learners' interests and preferences, it is essential 

to explore all potential candidate courses. Sequential 

recommendations seek to predict users' future choices 

based on their historical interaction data. Markov chains 

serve as an effective tool for modelling sequential 

behaviours. A specific variant of the Markov chain, 

known as the Markov Decision Process (MDP), offers a 

mathematical structure for modelling decision-making 

situations. 

This paper introduces a tailored adaptive and sequential 

path recommendation model for e-learning, utilising RL 

in conjunction with MDP techniques to tackle the 

previously mentioned challenges. A significant obstacle in 

the educational process involves the need to modify 

various components, including reading materials, 

listening activities, quizzes, assignments, entertainment, 

and gaming, to reflect potential shifts in learners' states 

and preferences, while also considering their prior 

educational experiences. RL is frequently employed to 

create recommender systems in contexts where user 

behaviour is subject to change. Consequently, the 

implementation of an RL agent proves advantageous in 

these situations, as it continuously adapts through its 

interactions with the learning environment. These agents 

are designed to adjust information dynamically in 

response to user preferences and temporal variations, 

while also regularly updating online course 

recommendations. Thus, this paper proposes a method that 

dynamically assembles adaptive online learning courses 

through the q-learning algorithm, a specific reinforcement 

learning technique. This algorithm is informed by learner 

behaviour and delivers course content based on both 

positive and negative feedback from learners, aiming to 

fulfil the established learning objectives. The 

implementation of q-learning in adaptive course sequencing 

hinges on identifying optimal paths for learners based on 

their unique interactions with the content. This process 

involves analysing various data points, such as prior 

knowledge, learning pace, and engagement levels, to 

formulate a state-action value function that can predict the 

success of specific learning sequences. Each learners' 

progress informs the algorithm, allowing for dynamic 

adjustments that cater to individual strengths and 

weaknesses, thus enhancing the overall learning experience. 

By employing reward systems that reflect the achievement 

of learning milestones, the algorithm continually refines its 

strategies, optimizing course delivery over time while 

encouraging deeper learning engagement. As a result of 

these adaptive mechanisms, the educational path becomes 

increasingly personalised, fostering a supportive 

environment that can effectively respond to diverse learner 

needs and preferences [10]. Hence, the potential of q-

learning lies in its ability to create a tailored educational 

journey that evolves alongside the learner. 

 

2. Q-learning 

Q-learning is a prominent reinforcement learning algorithm 

that is model-free and off-policy. It is widely utilised in 

various studies related to reinforcement learning. The 

foundation of q-learning is rooted in the Bellman equation, 

and it is represented as follows. 

 

𝑉𝜋(𝑠) =∑𝜋(𝑠, 𝑎)∑𝑝(𝑠′|s, a)(𝑊𝑠→𝑠′|a  + 𝛾𝑉𝜋(𝑠
′))

𝑠′𝑎

                           1 

𝜑𝜋(𝑠, 𝑎) =∑𝑝(𝑠′|s, a) (&𝑊𝑠→𝑠′|a + 𝛾∑𝜋(𝑠′, 𝑎′)𝜑𝜋(𝑠
′, 𝑎′)

𝑠′

)

𝑠′

         2 

 

The Bellman equation is a fundamental concept in dynamic 

programming which is as follows 

 
𝑊𝑠→𝑠′|a = Ε[𝑟𝑡+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑠𝑡+1 = 𝑠

′]                                              3 

 

The function 𝑉𝜋(𝑠) denotes the state value, while 𝜑𝜋(𝑠, 𝑎) 
represents the action value. Since the transition from state s 

to the next state s+1 is uncertain, the equation requires the 

inclusion of the expectation E, with s denoting the state and 

r denoting the reward. The q-learning algorithm selects the 

policy based on the Q-table organised as S*A, with S 

representing the state and A representing the action. The Q-

table facilitates the identification of the subsequent action 

by evaluating the present state of the environment. After 

determining the action, the agent executes it, and upon its 

completion, obtains a reward from the environment. After 

each action is taken, the Q-table is updated within the 

environment, and the modification of the Q-table is 

executed in accordance with equation 4. 

 

𝜑(𝑠𝑡, 𝑎𝑡) ← 𝜑(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟 + 𝛾max
𝑎𝑡
𝜑(𝑠𝑡+1, 𝑎𝑡) − 𝜑(𝑠𝑡, 𝑎𝑡)]            4 

 

The formula consists of variables where s denotes the state, 

a denotes the action, r denotes the reward, α denotes the 
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learning rate, and γ denotes the discount factor. Both α and 

γ have values ranging from 0 to 1.  

 

3. Related work 
Ronald Howard is recognized for his foundational 

contributions to the concept of instructional sequencing, 

which involves the strategic organization of various 

educational activities through RL to enhance student 

outcomes. Researchers in this field have extensively 

examined the impact of instructional order on learning 

effectiveness. For instance, Atkinson (1972) utilized 

reinforcement learning to create a mathematical model 

aimed at optimizing instructional sequences. In a related 

vein, Atkinson [2] proposed an educational framework 

comprising four critical elements: modelling the learning 

process, specifying acceptable behaviours, establishing 

objectives, and creating a measurement system to assign 

values to actions and rewards associated with achieving 

these objectives. These components can be linked to the 

Markov Decision Process (MDP) within the context of 

instructional theory. Atkinson [2] further clarified that the 

transition function corresponds with the learning process 

model in instructional settings, where the states of students 

are analogous to the states in an MDP. Instructional 

activities are viewed as actions that can be tailored 

according to the cognitive states of students, which may 

include tools such as flashcards, problem-solving tasks, 

worked examples, exercises, and levels in educational 

games. Additionally, each instructional action can be 

linked to a specific cost, which should be incorporated into 

the reward function. 

In the field of instructional sequencing within intelligent 

tutoring systems, two predominant strategies can be 

identified: task loop adaptivity and step loop adaptivity 

[11,12]. Task loop adaptivity pertains to the RL agent's 

ability to select various instructional activities, whereas 

step loop adaptivity involves the RL agent's decision-

making regarding the particulars of each step within a 

predetermined instructional activity. An example of step 

loop adaptivity is the choice between revealing the 

solution to the next step or prompting the student to solve 

it independently, as noted by Chi et al. [5]. Moreover, the 

implementation of adaptive learning in online education 

not only has the potential to enhance student outcomes but 

also alleviates the workload for educators, course 

designers, and learners. A pioneering study by Bassen et 

al. [3] introduced the first RL model designed to 

dynamically organise learning activities for a large-scale 

online course through active learning methodologies. This 

model minimises the number of tasks assigned while 

optimising the course activities sequence to enhance 

student performance. A thorough investigation was 

carried out with more than a thousand participants to 

assess the effects of this scheduling policy on student 

feedback, dropout rates, and learning outcomes. The 

results revealed that the reinforcement learning model 

produced results similar to those of a self-directed learning 

approach, but with a reduced number of activities and 

lower dropout rates. Furthermore, it demonstrated 

superior learning gains compared to a traditional linear 

assignment framework. 

 

4. Personalised adaptive e-learning and sequential 

learning path model 

4.1 The model 

The personalised adaptive e-learning and sequential 

learning path system is depicted in Figure 1. The 

personalised adaptive sequential learning leverages RL to 

recommend the optimal sequence of tasks for each learner, 

thereby enhancing educational outcomes and reducing 

feelings of dissatisfaction and disengagement. 

 

 

Figure 1: Q-learning for the proposed adaptive learning sequence 

 

From Figure 1, the learner is represented as the Agent. The 

student engages with the system throughout various 

processes, thereby aligning the student with the agent in the 

context of reinforcement learning algorithms. The agent's 

role is to select the subsequent content to be presented from 

an e-learning repository. The Environment denotes the 

learning context. Actions (A) encompass the 

recommendation of new tutorials, reading materials, 

assignments, quizzes, exams, or advertisements. States refer 

to the interaction characteristics of the learner, with the 

state-value serving as an indicator of the quality of the 

current state, such as the learner's progress. The state (S) 

represents the condition to which the environment returns 

following the agent's action. Consequently, the state reflects 

the learner's learning condition, illustrating the extent of 

learner's acquisition of knowledge. Data is organised in a 

vector format, with all state values ranging from 0 to 1. A 

state value of 1 for a student indicates complete mastery and 

comprehension of the material, whereas a value of 0 

signifies a lack of mastery. Rewards serve as feedback 

mechanisms from the environment to the agent following 

an action, signifying whether the agent's decision was 

advantageous within that specific context. Positive 

incentives are associated with behaviours such as viewing 

class videos or completing exams, while negative rewards 

may arise from actions like exiting the platform, engaging 

in gaming, or exhibiting signs of disinterest. The 

reinforcement learning relies on the framework of MDPs, 

which is defined by a set of actions and state transition 

probabilities. The MDP model includes a reward function 

(R) and a transition function (T) as follows. 
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𝑇: 𝑆𝑥𝐴𝑥𝑆 → [0,1] 
𝑅: 𝑆𝑋𝐴𝑋𝑆 → ℝ 

 

In this model, states are represented as S ∈ {0, 1, 2, 3, …, 

10}, with each state reflecting the learner's current 

position within the educational process. Rewards are 

assigned to each state-action pair according to the 

particular problem and learning environment. The Markov 

property dictates that the agent's focus is solely on the 

current state of the process, disregarding the entire history. 

This property is mathematically expressed in Equation 1. 

 
𝑃(𝑠𝑡+1|𝑠0, 𝑠1, … , 𝑠𝑡, 𝑎𝑡) = 𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)            5 

 

where P represents the probability of a state transition, s 

denotes the state, a signifies the action, and t indicates 

time. During each epoch, the agent takes an action that 

alters its environment and results in a reward. Value 

functions and the optimal policy are proposed as 

additional computational techniques for determining the 

reward value. This approach offers a mathematical 

foundation for simulating decision-making processes in 

scenarios where an individual's decisions and random 

variables interact to affect the outcome. In accordance 

with the Markov property, only the present state has an 

impact on future states, while past states have no 

influence. The Markov chain is a probabilistic approach 

where future states are conditionally independent of past 

states and are solely dependent on the current state by the 

current state solely determined by the transition 

probability in the process of moving from one state to 

another. A group of states exhibiting the Markov property, 

denoted as 𝑆1, 𝑆2, … , 𝑆𝑛, is referred to as a process within 

this proposed model. The transition function P, 

representing the probability of transitioning from one state 

to another, along with the state S, are the two key 

parameters used for its definition. The accumulation of 

rewards in a Markov process is defined as a Markov 

reward process, formulated with state S, transition 

function P, reward R, and discount factor γ. The discount 

factor elucidates how rewards in the future are valued 

when considering a reward in the present. A γ value of 0 

indicates that the agent only considers the immediate 

reward, while a γ value of 1 signifies that the agent takes 

into account all potential future rewards. In the context of 

Markov decision processes, a state S, transition function 

P, reward R, discount factor γ, and a set of actions a 

collectively form its representation. An MDP plays a 

dynamic interaction between an agent and its 

environment. The environment responds to the agent's 

specific actions by providing rewards and altering its state. 

Only the preceding state and action influence the 

subsequent state and reward. 

The state of the system is represented by the learner's 

interaction features, with the state-value v(S) serving as a 

metric to assess the quality of the current state. The 

transition probability quantifies the likelihood of the agent 

transitioning between states. This probability can be 

mathematically expressed as shown in Equation 6. 

 
𝑃(𝑆𝑡+1|𝑆𝑡0) = 𝑃(𝑆𝑡+1|𝑆1, 𝑆2, 𝑆𝑡)          6 

 

The current condition of the agent is denoted by 𝑆𝑡, while 

the subsequent condition is represented by 𝑆𝑡+1. As per this 

equation, the transition from state 𝑆𝑡 to 𝑆𝑡+1 is entirely 

unaffected by the preceding state. 

 

The symbol P is used to denote transition probability. 

Consequently, if the model exhibits the Markov property, 

the right side of the equation holds the same significance as 

the left side. It can be deduced logically that the present 

state retains information about past states. The probability 

of state transition from a Markov State at 𝑆𝑡 to 𝑆𝑡+1, or any 

other subsequent state, is shown in Equation 7. 

 
𝜌𝑠𝑠′ = 𝑃[𝑆𝑡+1 = 𝑠

′|𝑆𝑡 = 𝑠]            7 

 

The probabilities of transitioning between states are 

illustrated using a matrix known as the state transition 

probability matrix is presented as follows: 

 

𝑃 = [

𝑝11 𝑝12⋯ 𝑝1𝑛
𝑝21 𝑝22⋯ 𝑝2𝑛
⋮ ⋮ ⋮
𝑝𝑛1 𝑝𝑛2 𝑝𝑛𝑛

]            8 

 

It is worth mentioning that 𝑝𝑖𝑗 ≥ 0, and this holds true for 

all i, as indicated in Equation 9. 

 

∑𝑝𝑖𝑘 =∑𝑃(𝑆𝑚+1 = 𝑘|𝑆𝑚 = 𝑖)

𝑟

𝑘=1

𝑟

𝑘=1

                                                           9 

∑𝑝𝑖𝑘

𝑟

𝑘=1

= 1                                                                                                     10 

 

The matrix displays the likelihood of moving from the 

starting state i to any other state k. The sum of each row in 

the transition matrix is denoted as P. The total of each row 

amounts to 1. 

Q-learning leverages its past and future actions to learn 

from previous experiences and make optimal decisions. In 

this scenario, all transitions and associated actions from one 

state to another are feasible. However, the learner can assign 

positive or negative rewards to each action using the Q-table 

matrix. The Q-table displays the reward of transitioning 

from one state to another (action). The rows of the Q-table 

represent states (learner's features), while the columns 

represent actions. These actions encompass measurable 

positive effects, such as increased engagement in 

educational activities like watching tutorials, completing 

assignments, taking exams, reading, writing, and so on. In 

such scenarios, positive actions are rewarded in proportion 

to the positive outcomes they produce. Conversely, actions 

leading to negative outcomes, such as idleness, or using 

social media while studying, are penalised with negative 

rewards, resulting in a reduction in study time. Therefore, 

even if an action yields positive results, if it also increases 

social media usage or engagement in games or 

entertainment, the reward may be diminished due to the 

accompanying negative consequences. The components 

utilised in q-learning are defined by Equation 11. 

 

𝜑(𝑠𝑡, 𝑎𝑡) = 𝜑(𝑠𝑡, 𝑎𝑡) + 𝛼 ∗ [𝑅𝑡 + 𝛾max
𝑎
𝜑′ (𝑠𝑡+1, 𝑎𝑡+1) − 𝜑(𝑠𝑡, 𝑎𝑡)]     11 
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α represents the learning rate (0 ≤ α ≤ 1); 𝑅𝑡  represents the 

observed reward, 𝑠𝑡+1represents the new state, 𝛾 < 1 

represents a discounted factor applied to the future 

rewards that are obtained because of the selected action. 

The maximum reward that the system can calculate by 

executing some future action in the state 𝑠𝑡+1 is 

approximated as 𝜑(𝑠𝑡+1, 𝑎𝑡+1). The proposed model 

demonstrates improved effectiveness and has the potential 

to improve the learning environment for sequential path 

recommendation within the educational framework. 

 

4.2 Performance evaluation metrics 

When evaluating reinforcement learning algorithms, a 

range of metrics are utilised to gain insights into different 

facets of the algorithm's performance. In this paper, the 

following metrics were used: time of training (s), reward 

(mean, minimum and maximum), standard deviation, 

action taken (optimum), success rate (average in 

percentage), average step range (average), number of 

times of training for optimal course selection path; and 

cumulative (reward). Each of these metrics offers a unique 

perspective on evaluating the performance of a 

reinforcement learning algorithm, with the significance of 

each varying based on the specific application and 

objectives of the task. 

 

5. Implementation 

In this paper, states are denoted as S ∈ {0, 1, 2, 3, …, 10}, 

with each state representing the learner's position in the 

learning process. Rewards are then allocated to each state-

action pair based on the specific problem and learning 

context. The proposed states and their corresponding 

rewards are shown in Table 1 while the state diagram of 

the personalised adaptive learning with learning path 

sequence is shown in Figure 2. 
 

Table 1: Proposed states, actions, and rewards 
States Actions & reward to each action 

S0 – begin  

S1 – studying a1: remain on state → 10 

S2 – hypermedia lessons a2: last course → 20 

S3 – entertaining a3: supplementary content  → 50 

S4 – bored or frustrated a4: quiz/assignment → 60 

S5 – sleeping/resting a5: exam →100 

S6 – writing a6: high-level course →100 

S7 – game playing a7: low-level course  →70 

S8 – clicking ad on a8: social media -→-10 

S9 – completion of course  

S10 – quit study  

 
 

 
Figure 2: A personalised adaptive learning with learning path sequence 

 
Higher rewards serve to incentivise the agent to prioritise 

specific actions or states that hold greater value and appeal. 

On the other hand, average rewards are employed to provide 

moderate incentives for actions that are generally positive 

but not essential. By offering medium rewards, the agent 

can explore and develop a balanced policy without showing 

excessive bias towards or neglecting certain actions. 

Negative or lower rewards, on the other hand, can aid the 

agent in learning to disregard actions that lead to 

unfavourable outcomes or steer learning in the wrong 

direction. The issue at hand is addressed through the 

utilisation of one-shot policy recommendations for 

modelling learning path sequence recommendation and 

personalised learning. The actions in the proposed system 

include suggesting the next course, video, game, or 

advertisement, proposing future influences for personalised 

learning, enhancing recommendations for suitable content, 

influencing future learning decisions, and striving to 

maximise learner satisfaction while minimising interactions 

to facilitate learning based on the learner's performance 

characteristics, ultimately designing personalized adaptive 

pathways to reduce negative experiences. The reward 

system is established with a cap set at 100. If the learning 

process continues without any breaks throughout all cycles, 

the maximum reward achievable is 100 as shown in the 

output matrix P. The initial probabilities are based on this 

matrix. The columns of the matrix correspond to different 

actions, while the rows represent various states. By setting 

the feedback value at 0.75 and conducting 100 and 200 

iterations, the matrix outlining the optimal learning 

trajectory was obtained and the necessary rewards. P 

displays the reward distribution for the assumed state-action 

pairings in equation 12 
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𝑃 =

 
𝑆0
𝑆1
𝑆2
𝑆3
𝑆4
𝑆5
𝑆6
𝑆7
𝑆8
𝑆9
𝑆10(

 
 
 
 
 
 
 
 
 

𝐴1 𝐴2 𝐴3
10 0 50
10 0 50

   
𝐴4 𝐴5 𝐴6
0 0 0
60 100 0

   
𝐴7 𝐴8
70 −10
0 0

10   0 50
0 20 0
0 20 50

    
0 0 0
60 100 0
60 100 100

   
0 −10
0 −10
70 0

0 20 50
10 0 50
10 0 50

    
60 0 0
0 0 0
60 100 100

   
0 −10
0 0
70 0

0 20 0
0 20 0
10 20 50

   
60 0 0
60 0 0
60 100 100

   
0 −10
70 0
70 −10)

 
 
 
 
 
 
 
 
 

       12 

 
The q-learning algorithm undergoes training for 100 and 

200 iterations. The parameters' formulation is as shown in 

Table 2. The training process of the q-learning algorithm 

involves the utilisation of the Belman approach. Epsilon 

was adjusted during training to find a suitable equilibrium 

between exploration and exploitation. To gradually shift 

from complete exploration to exploitation, the initial 

epsilon value was set at 1 (representing pure exploration) 

and decreased to 0.8 with each episode as it moves from 

exploration towards exploitation. 

 

Table 2:  parameters' settings 
Parameter Value 

Learning_rate: α 0.5 

Discount_factor: γ 0.8 

States: S 11 

Actions: a 8 

Total_episodes 100/200 

Minimum_iteration 100 

 
The implementation was carried out using the Python 

programming language. The resulting simulations were 

subsequently utilised to evaluate established policies and 

juxtapose them against possible alternatives. Through 

simulations, an optimal sequence of actions was obtained 

that initiates from state 𝑠0 and progresses through states 

𝑠1, 𝑠5, and 𝑠6 (Figure 2). By examining the definitions 

linked to these states' labels, we can grasp the significance 

of the outcome. Essentially, the transition was made from 

viewing video lessons (𝑠2) to completing the course (𝑠9), 
passing through states 𝑠1, 𝑠4, and 𝑠6. This trajectory 

reflects an emphasis on study policy in e-learning initially, 

followed by a proactive approach to prevent study 

abandonment. It is conceivable that the recommended 

decision-making strategy has been altered to expedite 

problem resolution. This scenario mirrors real-life 

situations where initial expectations of learning challenges 

resolving naturally may not materialise, prompting the 

implementation of optimal actions to mitigate negative 

experiences and disengagement from learning. 

 

200 students were considered for simulation with a 

learning rate of 20 content pieces. The system was 

randomly generated with 20 content pieces and 200 

students distributed randomly across them. The rewards 

value over 100 iterations was reported in Table 3. The 

optimal reward in q-learning signifies the highest 

attainable reward within a given environment, reflecting 

the reward that an agent would obtain by consistently 

choosing the best action in every state. The best action is 

defined as the one that maximises the Q-value associated 

with a specific state. A Q-table in Table 4 was trained across 

100 iterations, illustrating the value associated with each 

state-action pair. Furthermore, the results of the q-learning 

simulations are detailed in Table 5 Q-table (trained) and 

Table 6 (rewards (generated)) over a span of 200 iterations. 

The maximum reward obtained during this period was 

77.63. 

 

Table 3: Reward (100 iterations) 

 
 

Table 4: Trained Q-table of state-action pair (100 iterations) 

 
 

Table 5: Rewards (200 iterations) 

 
 

Table 6. Trained Q-table of state-action pair (200 iterations) 

 
 

The Q-table was obtained as a post-training output. The 

results of the implementation as depicted in Tables 3-6, 

showcasing the potential decisions the learner can make in 

a given situation. A value of 0 signifies that the state 

remains unaffected by the action taken. It is advisable to 

engage in the activity when the value is low rather than 

pursuing alternative actions. The optimal route for the 

engaged learner is 𝑠0 → 𝑠1 → 𝑠6 → 𝑠9 (Figure 2). The 

proposed system reveals the student's preferred study 

sequence for a particular course. Additionally, the q-

learning approach takes into account the learner's 

preferences, and level of knowledge when providing 
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recommendations. Figure 2 depicts the scenario of 

learning paths. The red words denote the actions the agent 

can take depending on the learner's condition, while the 

circles reflect the states in which the learner can exist. For 

instance, the algorithm might recommend videos or 

interactive visual materials to a learner who has a 

preference for visual learning methods. Should a learner 

encounter difficulty with a specific idea, the methodology 

may suggest supplementary materials or exercises to 

strengthen that particular concept. 
The statistical results of q-learning's performance in 

recommending learning path sequence over a 100 and 200 

iteration are presented in Table 7. The Table indicates a 

mean reward of 4.5, showcasing some variability in 

rewards due to the learner's position and a decline in 

rewards at the start of each iteration. Consequently, the 

model takes longer to make recommendations with 

varying rewards (each move incurring a -1 point penalty). 

The performance metrics of q-learning improved with an 

increase in the number of iterations, as evidenced in 

Tables 3-6. For instance, q-learning excelled over 200 

iterations compared to 100 iterations, with the latter 

showing lower performance. Despite the longer time of 

training, q-learning with 100 iterations consistently 

outperformed the 200 iterations in this aspect. 

Furthermore, the performance indicators of q-learning 

with 200 iterations surpassed those of 100 iterations, albeit 

with slightly longer training times than the former. The 

proposed method demonstrated the fewest average 

running times over 200 iterations and achieved a higher 

success rate (average) compared to q-learning over 100 

iterations. 

 

Table 7: Performance of the proposed system 
Evaluation metrics 100 episodes 200 episodes 

Time for training (s) 5.13 5.21 

Reward (mean) 4.5 5.0 

Standard deviation 2.12 2.16 

Reward (Minimum) 2.0 2.0 

Reward (Maximum) 7.0 7.0 

Action taken (optimal) 3 3 

Success rate (average) (%) 60.86 70.82 

Action step range (average) 12.5 13.2 

Optimal course selection 
path training times 

10 8 

Reward (Best) 9400.4 22704.01 

 
6. Future research direction 

Future initiatives will involve a diverse array of actions 

tailored to each state, with the flexibility to include as 

many states as necessary to determine the most effective 

approach for each learner. A significant challenge arises 

from the vast spectrum of possible states or action values 

associated with the state. In particular, the implementation 

of the strategy in an online environment utilising 

traditional reinforcement learning may lead to challenges 

associated with complexity and convergence. Regarding 

prospective research directions, several gaps have been 

identified: Firstly, to mitigate issues concerning 

complexity, convergence, and model efficiency, the 

application of deep Q-learning may offer a promising 

alternative; secondly, traditional RL techniques face 

various obstacles, notably the potential for algorithmic 

inefficiency when dealing with a large action space, as the 

algorithm assesses all actions simultaneously. To tackle this 

issue, the deep deterministic policy gradient method 

emerges as a viable approach. Furthermore, future research 

should strive to include a broader spectrum of states and 

actions in order to identify optimal learning pathways that 

correspond with the learner's adaptive sequential 

behaviours, learning preferences, activities, varied 

educational resources, customisable difficulty settings, 

tailored feedback, individual preferences, competencies, 

and levels of knowledge. This objective will be pursued 

through the implementation of multi-agent RL strategies to 

facilitate recommendations. 
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