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Mobility, ease of accessibility, and portability have continued to grant ease in the adoption rise of smartphones; 

while, also proliferating the vulnerability of users that are often susceptible to phishing. With some users 

classified to be more susceptible than others resulting from media presence and personality traits, many studies 

seek to unveil lures and cues as employed by these attacks that make them more successful. Web content has 

been often classified as genuine and malicious. Our study seeks to effectively identify cues and lures using the 

sentiment analysis targeted tree-based gradient boosting algorithm on dataset divided into train/test sets that 

are scraped from client/user online presence and activity over social networking sites. The dataset is scraped 

using the Python Google Scrapper. The essence of which is to effectively help users to classify contents from 

social networking sites as either malicious phishing attacks, or as genuine contents for use using sentiment 

analysis. The machine learning of choice is the XGBoost. Results show that the ensemble yields a prediction 

accuracy of 97-percent with an F1-score of 98.19% that effectively correctly classified 2089-instances with 

85-incorrectly classified instances for the test-dataset. 

 

 

1.0 INTRODUCTION 

With the Internet advancing as an efficient and effective 

means of data sharing and dissemination, many adversaries 

have since begun to use the medium as a tool for the 

propagation of malicious content [1]. Access to malicious 

content online [2] has since become a multi-billion-dollar 

challenge that plagues a variety of users daily [3]. Despite 

the plethora of continued studies that sought to improve 

detection via filtering and classification schemes, users 

continue to fall prey to the scam [4]. This can be attributed 

to the fact that websites are rippled with malware that 

presents themselves as unsolicited insecure adverts and/or 

hides in third-party legitimate software [5]. Various 

researchers have begun to investigate how various aspects of 

psychology seek to compromise data – even with a plethora 

of cyber-security measures in place [6]. One such concern is 

how the Internet is gradually replacing normal social 

activities as users now engage themselves with web content 

– as tools to compensate for their inherent loneliness and 

social seclusion [7]–[9]. Digital transformation seeks to 

integrate informatics and its enabling technologies into 

every facet of our society[10]. Thus, changing our mode of 

service delivery to clients in lieu of the value they get from 

the services rendered [11]. It is also a cultural change that 

requires organizations to continually challenge the status 

quo [12], experiment [13], and get comfortable with failure 

[14]. Thus, as more individuals become connected to the 

Internet via enabling, support devices [15] – it consequently, 

also opens up many of such persons on a larger scale, to 

avenues of exploitation that can be harnessed by adversaries 

via socially-engineered threats and attacks [16].The 

socially-engineered attack is an old paradigm that continues 

to steadily grow, with no end in sight. Its continued growth 

hinges on the human trust instincts and insatiable wants that 

an attacker exploits to steal the data of a compromised user 

[17]–[19].  

Socially-engineered attacks use technical subterfuge to 

defraud an unsuspecting victim of their data by posing as a 

trusted identity [20], [21]. Common methods employed by 

these adversaries (and not limited to) includes phishing, 

pharming, spamming, vishing, etc. This provides the 

attacker with an attractive entry point of contact with a 

compromised victim's device as well as becomes a 

pilot/pivot point for attack spread [22], [23]. With such 

attacks targeted at Internet-connected user devices as well as 

with over 200 percent adoption of smartphones, many users 

have become vulnerable and compromised victims [24] – 

alongside complications of work/business issues on the 

exposure of sensitive user-data to [25]. 

Phishing often employs multiple means such as spoofed 

emails, weblink forgeries, phone calls, man-in-middle chat, 

covert redirect, etc – to convince a user to divulge 

confidential data or indulge in fraudulent transactions [26], 

[27]. An effective, favored variant is spear phishing, which 

uses targeted mail with access links to cleverly persuade 

potential victims, and redirect them to spoofed malicious 

web contents containing malware that aims to compromise 

user data. Its variant (SMS-phishing) tricks a user into 

downloading the malware onto a user's device [28]. Phishing 

basically, redirects user traffic to a fake site, by either 
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Table 1: Related Literatures Contributions 
 

changing the host's file on a victim's device or by exploiting 

the vulnerability in the domain name service server 

software. Thus, it allows an adversary to install malware on 

a user's device and redirects the user to a fraudulent site 

without their consent or knowledge [29]–[31]. Phishing 

involves an attacker redirecting a user’s access to malicious 

content shared from spoofed websites from a viewpoint that 

such sites are legitimate and trustworthy sources. Typical 

phishing threat and/or attack consists of 3-elements namely 

explained as thus [31]–[33]: (a) lure message is received by 

the potential victim as originating from a legitimate source. 

Its reliability is strengthened by exploiting user curiosity, 

fear, and empathy, (b) hook is a compromised link or 

attachment included in the message, and (c) the catch 

involves an attacker obtaining the user's private data.  

This may appear or seem simple enough; But, the 

technique/procedure(s) constantly evolve, to reflect new 

social trends, that use new methods to bypass security, and 

evade detection. Its continued spread allowed attacks to vary 

in frequency and diversity, enhancing their likelihood of 

success [34]. Thus, phishing is often positioned as trusted 

entities to defraud a victim (via mail, SMS, etc). Its 

characteristics include: (a) the message often makes 

unrealistic demands via various forms of intimidation 

targeted at a user’s psych, (b) there is always a catch, (c) 

there is often missing data with spelling errors and poor 

grammars, (d) there is often a mismatch in URL (uniform 

resource locator) to redirect users to a faked website, and (e) 

messages often demands sensitive, confidential user data 

[35], [36]. Umarani et al., [37] used victimization features to 

characterize the design impact of websites on both the 

structure of the content and the probability content will 

victimize a user. They used 2-feats to help users understand 

and identify malicious contents, and eliminate the awareness 

gaps: (a) believability to identify cue sophistication which 

increases the possibility a user will believe a message, and 

(b) insidiousness to measure the potency in degradation 

lures and its success rate while remaining undetectable to 

users.  

Ezpeleta et al., [38] investigated spam attacks with millions 

of malicious files sent daily via spam. They posited that for 

many users – it is about control rather than an issue of 

prevention and mitigation of spam via filters and other 

schemes as technical measures. Also, the users' level of 

suspicion, emotional control [39], [40], and attack 

awareness must become a critical component in either the 

success or failure of an attack. This is because – emotion 

becomes personality traits and behavior that culminates as 

cues/factors that drive the desire to help, to seek gain via 

exploitation, and to be liked. These, all suggestions make 

some persons more susceptible to attacks [41], [42]; And 

such victims, may fall repeatedly into a scam. 

 

1.1.  Machine Learning Approaches: Review of 

Literatures 

The rise in phishing attack cases has raised 

concerns, making phishing detection a crucial and urgent 

task for businesses. Its adoption in cyber-fraud can be 

grouped into the following classes: (a) the outright theft of 

user personal details and information, (b) the theft of 

confidential details via malware intrusive means, and (c) 

surreptitiously attainment during an online transaction 

without the compromised user’s awareness [43], [44]. The 

loss in cost associated with card fraud has since become 

staggering, with the payment card industry consequently, 

incurring losses in billions of dollars annually. Users and 

businesses must remain committed and vigilant towards the 

continued improvements with phishing detection and 

prevention systems. Though, despite these efforts, 

adversaries continue to invent new techniques to circumvent 

these security measures as well as avoid detection, making 

it a constant battle [45], [46]. To curb and minimize the 

effect therein in the society of phishing attacks over web-

content, machine learning approaches have been 

successfully trained and adapted to effectively recognize 

phishing patterns within web-contents as cues and lures. 

These, they learn through features classification either from 

the normal behavior cum signature in transactions, or the 

quick detection of an unusual activity in the transaction 

pattern indicative of fraudulent profile.A variety of such 

machine learning (ML) models that have been successfully 

used or implemented includes: Logistic Regression [47]–

[49], Deep Learning [50], [51], Bayesian model [52], Naive 

Bayes [53], Support Vector Machine [54], Random Forest 

[55], and other models [56] that have been effectively used 

to detect credit-card fraud. Many of these, have drawbacks 

with their flexibility in feature selection, importance, and 

accuracy. Our study adopts extreme gradient boost tree-

based ensemble. This choice is due to its capability to reduce 

overfitting, address imbalanced datasets, and yield a 

vigorous accuracy [57]–[59]. Table 1 is a list of 

contributions of machine learning approaches to phishing 

schemes so far: 
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The inherent gaps in previous studies includes thus [67]–

[71]. 

1. Lack of Datasets: Finding the right-format dataset – is 

crucial to machine learning task. Access to high-quality 

datasets is needed in training and performance 

evaluation [72] – as there is limited data, which often 

yield significant false positives [73]. 

2. Imbalanced Datasets: A critical hurdle is the challenge 

with imbalanced datasets with cases of phishing lagging 

behind. Studies must seek explore intricate sampling 

techniques, or harness the robust power of ensemble 

methods tailored explicitly to mitigating the challenges 

with imbalanced dataset [74], [75]. 

3. Cross-Channel Detection: With increased multiple 

channel [76]–[78] – newer models must integrate the 

varying channel data to enhance the overall accuracy. 

Cross-channel phishing detection has now become a 

critical area of research and business focus [79] as 

traditional phishing detection modes are limited in 

adapting then emergent fraud patterns as well as keeping 

up with novel tactics. 

 

1.2.   Tree-Based Algorithms and Ensembles 

A very common approach in ML are tree-based 

methods which descend from single decision trees [80]. 

Adopting a tree-structure, each tree generates a series of if-

else rules used in majority voting scheme that allows it to 

predict observed classes [81]. In classification/regression 

tasks, each tree is a recursive top-down model in which a 

binary tree partitions a predictor space with variables 

grouped into subsets for which the distribution of dependent 

variable 𝑦 is successively more homogeneous [82]. Each 

decision tree has the merit of being easily understood [83]; 

But, its use alone often leads to model overfit in a prediction 

task as the model seeks to learn and identify features of 

interest during training [84]. Thus, it yields degraded 

performance in its classifying of unknown labels [85]. These 

drawbacks have birthed ensembles with improved predictive 

norms and are more expressive [86]. Tree-based ensembles 

learn by constructing many individually trained decision 

trees [87], and combines/aggregates their results into a 

single and stronger model, whose output outperforms the 

results of any single tree [88]. It achieves this via bagging 

[89]–[91] and/or boosting [92]–[94] approaches.  

In the case of boosting – the tree(s) converts weak 

learners (i.e., achieve accuracy just above random guess) 

onto a strong learner with enhanced predictive capacity by 

sequentially training each weak learner to correct the 

inherent weaknesses of its predecessor[95]–[97]. Each tree 

yields a feedback from previous trees [98], [99]. Popular 

boosting ensembles include adaptive boosting (AdaBoost) 

[94], gradient boost (GB) [100], boosted logistic regression 

(LogitBoost) [101], and stochastic gradient boosting (SGB) 

[102]. They are expressed as Equation 1 – to yield its 

prediction by combining outcome of its weak learners with 

its weighted sum to yield a higher weight for incorrectly 

classified instances as thus: 

 

𝐿𝑡 = ∑ 𝑙

𝑛

𝑖 = 1

(𝑌𝑖
𝑡 ,  �̂�𝑖

𝑡−1 +  𝑓𝑘(𝑥𝑖)) +  Ω(𝑓𝑡)(1) 

 

Conversely, bagging grow successive trees 

independently from earlier trees – such that each tree is 

constructed using a bootstrap aggregation mode to sample 

the data using majority vote during its prediction [103]. The 

Random Forest add extra layer of randomness to the bagging 

scheme, which in turn – changes how the trees constructed. 

While, standard decision trees has that each node is split 

using the best split among all predictor variables – the 

Random Forests allows its nodes to be split using the best 

among a subset of predictors randomly chosen at that node 

[104]. Its recursive structure helps it to capture interaction 

effects between the variables [8], [46], [105]. 

In all, tree-based ensembles have successfully 

proven to be better than other established approaches across 

a variety of different tasks [106] ranging from traffic flow 

classification [107], customer churn prediction [108], and 

prediction of online purchase intention [109]. They have 

been known to be suited to reduce both bias and variance in 

single learning schemes. While individual models may get 

stuck in local minima [110], a weighted combination of 

several different local minima – produced by ensemble 

methods [111] – are able to minimize the risk of choosing 

the wrong local minimum [112]. 

 

2.0: MATERIALS AND METHODS 

2.1.   Data Gathering / Sample Demographics 

Data were collected using Google Play Scraper Library for 

Python, and a total of 8,693 records were gathered for the 

period June to December 2022. The scrapped records consist 

of personal data, compromised contents (links, images, and 

texts), user emails, posts, likes and shares, and replies as 

suggested by [113], [114].  

 

2.2. The Detailed Proposed Experimental Ensemble 

The access ease in web connectivity by many users has 

continued to see a rise in data shared between various users. 

With such popularity especially with the birth of 

smartphones, phishing attacks have been on the rise with 

lessened user trust in shared data [86], [115], [116]. 

Generally, a user’s opinion of an idea or topic of interest is 

simply his/her belief, centered on his perception or feeling 

towards the issue at hand. The belief and opinions represent 

the user's disposition of emotion. This emotion correlates 

with his/her behavior concerning the situation and is referred 

to as sentiment. Thus, sentiment analysis deals with a class 

of language that seeks to trace and track a user's or 

community's behavior towards a topic of interest [37], [117]. 

In natural language processing – its data is often 

unstructured and thus, rippled with ambiguities, noise, and 

imprecisions. The proposed ensemble is herein seen in 

Figure 1. 
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The sentiment analysis process is carried out in several 

steps[41], [118]–[121] including: 

1. Step 1: Data Collection/Cleaninginvolves the 

processes of collecting data and performing data 

cleaning as well as preprocessing. Once the data is 

collected, it is then pre-processed/cleaned. This step 

implies the dataset is restructured from its natural 

unstructured state(s), normalized, removal of some 

phrases or stopwords, tokenization, and word 

stemming. The steps are also explained thus [14], [88], 

[122], [123]: 

- Case Folding attempts to convert all letters, strings, and 

concatenated word tokens into lowercase or uppercase. 

It does this to avoid two-or-more word tokens ending up 

with the same meaning but being treated differently by 

the machine due to writing in different forms; lowercase 

and uppercase. 

- Punctuation removal is simply the removal of all 

symbols of punctuation marks from word phrases and 

tokens. We note also that punctuation mark in natural 

language processing (NLP) does not add extra 

information. It, however, reduces the dimensionality in 

our dataset, to be resolved. 

- Stopword removal seeks to remove some common 

tokens/words across all the documents. Stopwords like 

punctuations, do not add much information to the 

scenario; And, their removal also only reduces the 

dimensionality in our dataset to be resolved. We also 

note that pronouns, articles, conjunctions, and 

prepositions – are often and are, classified as stopwords. 

- Tokenization simply breaks down a sentence into 

smaller elements. Tokens help us to interpret the 

implicit meaning of a sentence by analyzing their order 

of placement in the text corpus. Thus, they act as input 

for various NLPs algorithms – with normalized texts 

that are broken into individual word elements, 

stopwords, and punctuation characters (that are equally 

removed in this unit) [124], [125]. 

- Normalization is converting/expanding a 

token/word/slang back to its original form. This process 

removes abridged versions of a token (slang/word) from 

a text to preserve its basic form. It also expands 

abbreviations into their complete forms. E.g. the term 

“notin” is changed to “nothing”; while, the word 

“welccoomme” is transformed to its base “welcome.” 

For normalization, we used the abbreviation dictionary 

by Ojugo and Eboka [41] and Afifah et al. [119].  

- Word Stemming is a step to remove affixes in a word, 

both affixes that appear before and after the word. 

Stemming converts each word to its root word without 

affixes. 

2. Step 2: Feats Extraction and Selection – is the second 

step. It involves the extraction of the underlying 

features to be considered as well as formatting these 

features into parameters of estimation to aid the 

effective and efficient classification of the texts. Thus, 

this stage helps the framework ensemble to select the 

most relevant text features from an expert perspective 

and/or opinion. Feature extraction and feature selection 

methods are used for this purpose. These methods are 

used to reduce the number of input variables, avoid 

overfitting, decrease computational complexity or 

training time, and improve model accuracy. 

Vectorization and word embedding methods are used 

for feature extraction [118], [119]. 

- Term Frequency Inverse Document Frequency (TF-

IDF) – In exploring many machine learning heuristics, 

which seek to discover the relative probability scores 

of parameters of interest – to yield optimal solutions – 

we note that these algorithms do not understand 

characters cum word tokens. But, they very well 

understand and accept as input numbers. With feature 

selection and extraction, since it is impossible for the 

textual nature of the dataset to interact directly with the 

machine and/or algorithm – we employ vectorization 

methods. For this study, we use the TF-IDF which 

seeks to compute the frequency of the occurrence of 

certain word tokens in a document – so that the more a 

word appears – the greater its TF-value; while IDF 

simply aggregates the weight of the words against its 

appearances throughout the document. Conversely, the 

more certain words appear, the smaller its IDF-value 

with the transposed TF-IDF computed as in Equation 2 

and 3 respectively: 

 

𝐼𝐷𝐹 = log (
𝑁

𝐷𝐹
)                                                             (2) 

 
𝑇𝐹 − 𝐼𝐷𝐹(𝑑, 𝑘) = 𝑇𝐹(𝑑, 𝑘) ∗ 𝐼𝐷𝐹(𝑘)                          (3) 
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Figure 2: Frequency Chart of Positive Sentiment Words 

3. Step 3: Machine Learning Heuristic – We implement 

the proposed heuristics to help effectively classify or 

categorize text as positive, negative, or neutral (words) 

based on the sentiment polarity of opinions. Machine 

learning techniques classify the sentiments based on 

training and test dataset [126]. 

- Extreme Boosting (XGBoost) is a decision tree 

ensemble that leverages Gradient Boosting and is 

designed to be scalable. By combining weak learners, 

a Gradient Boost becomes stronger via iteration to find 

an approximate fit. It achieves this via an additional 

expansion to its objective function by minimizing the 

loss function (creating a variation) used to control the 

trees’ complexity. XGBoost offers a better optimal 

solution by combining the predictive power of multiple 

weak base learners. Each learner contributes data about 

the task to the ensemble and is used for prediction – 

enabling the XGboost to yield a stronger learner [127]. 

Given the training sub-dataset to be trained xi and its 

corresponding labels yi – XGBoost predicts the optimal 

outcome using Equation 4: 

 

�̂�𝑖
𝑡 = ∑ 𝑓𝑘

𝑡

𝑘=1

(𝑥𝑖) =  �̂�𝑖
𝑡 + 𝑓𝑘(𝑥𝑖)                                      (4) 

 

For a better outcome, the XGBoost minimizes its 

objective function, which contains the loss function 

l(𝑌𝑖
𝑡 , �̂�𝑖

𝑡) and its regularization term Ω(𝑓𝑡). The loss 

function ensures that model overtraining does not occur 

and that the training data are fitted well enough to the 

model; while, the regularization term ensures the 

complexity fitness of the trees. Tuning the loss function 

ensures the model yields higher accuracy; while, tuning 

the regularization terms ensures a generalized simpler 

ensemble as well as helps the ensemble avoid model 

parameter overfitting as in Equation 5 [93], [127]. 

 

𝐿𝑡 = ∑ 𝑙

𝑛

𝑖 = 1

(𝑌𝑖
𝑡,  �̂�𝑖

𝑡−1 + 𝑓𝑘(𝑥𝑖)) +  Ω(𝑓𝑡)        (5) 

 

- Hyper-Parameter Tuning controls how much of the 

tree complexity and its corresponding nodal weights 

need to be adjusted in place of gradient loss. The lower 

the value, the slower we travel on a downward slope. It 

also ensures how quickly a tree abandons old beliefs 

for new ones during the training. Thus, as the tree 

learns – it quickly begins to differentiate between 

important features cum parameters, and otherwise. A 

higher learning rate implies that the tree can change, 

learn newer features as well as adapts flexibly, and 

more easily. The ensemble uses the regularization term 

to ensure the model changes quickly, only to values that 

are within the lower and upper bounds. The ensemble 

does this to ensure that it adequately adjusts its learning 

rate to avoid over-fitting and overtraining. Other feats 

that can be adjusted include max_depth, sub_sample, 

and n_estimators. The n_estimators indicate the 

number of decision trees in XGBoost, which when set 

as 1 – will make the algorithm generate only a single 

tree. For best performance, the XGBoost ensemble 

must carefully tune these parameters [126]. 

- Cross-Validation/Retraining is an applied ML 

scheme that estimates the learned skills of a heuristic 

technique on unseen data. It is a procedure also, that 

seeks to evaluate the model's performance about its 

accuracy on how well it has learned the underlying 

features of interest via the resampling technique. Thus, 

in cross-validation – the modelers choose several data 

folds (or partitions) which helps the model ensure it is 

devoid of overfitting. Here, we use stratified k-fold (it 

rearranges the data to ensure that each fold is a good 

representation of the entire dataset) [128] as in 

algorithm listing 1. 

 

 

Algorithm 1:Stratified k-fold cross-validation 

shuffle the dataset 

split or partition training dataset into k-folds 

For k-iterations 

 re-arrange data in partition: return k-folds = true 

 return k-folds = true 

end for 

evaluate model 

End 
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3. 0 FINDINGS AND DISCUSSION 

3.1.  Findings and Discussion 

We explain how we performed data preprocessing, 

feature extraction, model training, and evaluation. 

 

3.1.1. Data Preprocessing 

We have already applied the preprocessing steps to 

the dataset as earlier mentioned in the previous section. We 

then visualize the data with positive sentiments. Datasets of 

such nature can be used to (a) rank images, (b) for natural 

language assessment using ML schemes, and (c) mine user 

assessment via the use of metadata to infer semblance, 

company characteristics, and feelings. Thus, in general – the 

dataset objective is the mining of the dataset to seek the 

relationship of various forms through the use of these 

effective cues and lures [129]. These will attempt to seduce 

the ensemble to navigate compromised links, images, and 

other embedded objects. This is as seen in figure 2. 

 

3.1.2. Training Phase 

Here, we partition the retrieved dataset into 75 

percent trainingdata, and 25 percent test data. For the 

training dataset, we used 6,520 rows, and a test dataset of 

2,173 rows. We then perform feature extraction using the 

TF-IDF vectorization method – which helps the ensemble to 

effectively convert our retrieved text contents into vectors. 

Furthermore, we use Python’s ScikitLearn TfidfVectorizer 

function to extract the desired features of interest – as 

defined in our ensemble. We then train the model using our 

train dataset. It is also worthy of note that we employ the 

trial-and-error method to tune the hyper-parameters and find 

the weight that yields the optimal solution. This is aimed at 

improving the ensemble's fitness and protects the ensemble 

from model overtraining and overfitting of parameters as in 

Table 2. 

Using the trial-n-error mode for the hyper-parameters, we 

observe during the training phase, that the best-fit values for 

learning_rate, n_estimators, and max_depth are 0.2, 500, 

and 6 respectively. 

 

3.1.3. XG-Boost Classifier Evaluation and Discussion 

  We evaluate the sentiments of the words scrapped 

as shown in Table 3: 

The ensemble yields the metrics in Table 3 – which notes 

that the cues and lures for the negative sentiments were 

detected and effectively classified with an 87-percent 

accuracy (0.87); while the cues and lures for positive 

sentiments were also detected with a prediction accuracy of 

97-percent (0.97). Such disparities in the accuracy of 

prediction may have been expected and are normal – due to 

errors of false-positives, true-negatives, false-negatives, and 

true-negatives in agreement with [130]–[132]. 

3.1.4. Stratified K-Fold Retraining Evaluation and 

Discussion 

  The stratified k-fold retraining yields Table 4. 
 

Table 4. Stratified k-fold Evaluation Metrics 

 

The ensemble during the retraining or cross-validation phase 

– over a series of iterations (movement) yields an accuracy 

prediction of 99.1 percent (i.e. 0.991) in detecting the 

cues/lures for both sophistication and degradation of 

positive and negative sentiments. 

 

3.2.  Ensemble Evaluation and Performance 

To compute the sensitivity, specificity, and 

accuracy of the ensemble – we evaluate its performance 

using Eq. 5 to yield Figure 3 as thus: 

 

Figure 2 confusion matrix clearly shows the proposed 

XGBoost ensemble efficiently and correctly classified 2089-

instances of the test-dataset; and incorrectly classified 89-

instances as compared to the studies by [133], [134]. 

Underlying each user interface is often a trust decision box 

that lets a user either trust (blue for accept) or not trust (red 

for reject) using content-specific decisions. 

 

3.3.  Discussion of Findings 

Table 5 shows sample sophistication and 

degradation (cues to detecting malicious content embedded 

Itera

tion 

1 2 3 4 5 6 7 8 9 10 11 12 

F1 0.9

72 

0.9

81 

0.9

79 

0.9

78 

0.9

83 

0.9

91 

0.9

89 

0.9

84 

0.9

90 

0.9

89 

0.9

86 

0.9

87 
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in posts, photo likes, and shares, targeted emails, etc. 

 

 

S06: Free Grammar and Style in Writing: 

Uses generic greetings instead of receiver 

names 

Context-

Language-Tone-

Professional 

S09: Unrecognize file types as 

downloads/attachments: File extension is unknown 

Content-

URL Links-

Obfuscated 

 

Sample degradations, which may be known to a user are 

listed below [3], [19]: 

D06: Information or item prices are too good 

to be true 

Contract-

Offer-Monetary-

Products 

D08: Appeals to an emotion such as urgency 

and greed 

Context-

Language-Tone-

Professional 

 

The goal of the experiment is to understand how 

users make trust decisions, identify their deficiencies, and 

adapt training/awareness capabilities to prevent 

victimization of the user and the associated organization 

where they work (in this case, the university) which agrees. 

The experiment is presented as a mixture of malicious and 

normal content to simulate real-time interactions with an 

email client, web browser, and social network [136], [137]. 

The experiment follows a scene where a participant must 

respond to phishing and malicious insider tactics to keep 

them quite interested and engaged online (increased online 

presence). Simulation provide the participants with rich 

interaction capabilities that allow them to hover over links 

and attachments and see natural browser-like behavior [47], 

[138].  

 

4.0 CONCLUSION 

Social media networks have safeguards and rules to educate 

users as well as protect them against phishing attempts. 

These often involve the capability to investigate and 

blacklist phishers if such cases are reported. Both the media 

and users are held accountable for preventing phishing 

attacks and their awareness. The social media platform is in 

charge of informing users about phishing and giving 

controls to prevent them. Conversely, users must stay ahead 

of the curve with and about preventing these attacks as well 

as implementing safety controls to limit such accidents. 
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