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In this paper, a 2-point Block Parameter Dependent Integration Formula (BPDIF) is developed. The method
is dependent on the parameter T that is inserted to help determine the range of values for which the method

is A-stable. Range of values for T is presented herein. The proposed method are of order p=2 and compete
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1.0 INTRODUCTION

Numerical integration of Stiff Initial Value Problems
(IVPs) in Ordinary Differential Equation (ODEs) of the
form:

V=f(y), ya)=y,a<x<by:R—>R" f:RxR'5R" ()

is still an active area of research. Most times, the solution
to Eq. (1) cannot be obtained analytically, so methods
like the Linear Multistep formula (LMF) are developed
to integrate Eq. (1). Using LMF requires that the method
must have k-1 initial values for integration to commence
and the method must be A-stable. Over the years, many
numerical analysts have taken various steps in solving
Eq. (1), some of the existing methods are documented in
[5-9].

To exploit computational speedup inherent in modern
day computers, the Block Methods were introduced [4].
Block Methods are generalization of Linear Multistep
Formulas and generate approximate solutions at more
than one grid point at every cycle of integration. The
number of points, depends on the structure of the block
method. A — stability been a very important requirement
for method designed for the integration of stiff initial
value problems.In order to ensure A-stability of the
method, the integration formula being developed must be
implicit. In this paper, a family of two point block
method is introduced that is parameterized by the
insertion of parameter. The insertion of parameter is to
afford for search of range of interval for which the family
of method is A — stable.

2.0 STRUCTURE OF THE PAPER
The rest of the paper is structured as follows: section two
is on the derivation of the proposed method, the stability

favorably with other known methods in literature.

characteristics are presented in the third section while in
section four is on the numerical experiment on two
standard numerical test problems. In section five, the
conclusion is presented.

2.1 Derivation of Method

Consider the method of the form:

A,Y,

n+l T Al Yn + hB(Fn + TFn ) (2)

+1

T . . :
where = is a real value constant determined in such a way

as to ensure that Eq. (2) is zero stable. If TZO, 2)
reduces to a 2-Point Block Backward Differentiation

Formula (BDF) developed in [9]. Also, Ay, 4, and B are
2x2

matrices whose entries are as prescribed as follows:
1 0 b 0
A, = o4 = ana B=|T" .
0 1 a, a, 0 b,

F

Yn+1’Y n and

no

F .
n+1 yectors are given by:

Y,H_l — |:yn+l :|’ Yn — |:ynl i|’ Fn — |:ﬁ11:| and Fn+1 — |:f;1+1 :|
yn+2 yn fn fn+2

ynzy(xn) and fnzf(xrﬂyn)‘

In Eq. (2),

Note that

The proposed method Eq. (2) is herein referred to as two-
point Block Parameter Dependent Integration formula
(BPDIF).
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The Linear difference operator Lly (x);h] associated
with Eq. (2) is

T
= G

Inserting coefficient matrices and vectors in Eq. (3)

yields Eq. (4)
wen-[ ) e s e e

_ [y(xrnl )7 auJ’(xn—l )* “uy(xn )7 hby, (f(xnﬂ > y(xnﬂ ))+ “f(xnﬂ s y(xn—l )))J
y(xnn )* “21y(xn—1 )7 azzy(x" )* by, (f(xmz . y(xn+2 ))+ "?f(xn , y(xn )))

(4)

y(x,)

It is assumed here that is differentiable and

continuous for as many times as maybe required.

Taylor expanding

B D B ORI BT O WA C R L E ) WA Y )

in first row of Lly (x), in Eq. (4) about Yo, gives

LIy} al= 3G )+ byl ) i y.(x") +h y'(x”)+ B yq(x")—auy(x b ayhy'(x, )-
ot LEd o 7o Cipme (" Y) vl 076, 176, )4
s %T")+...+h5‘ yTE)+uy (x, )-ahy” (Jc,,)+mh2 %‘r)t.ﬁ(—l)’h’ yTl(x)
)
Simplifying (5) to obtain
Ll[y(x)h] =(1 -y + azl)y(x )+ h(l+a" —by —hy )V'(Xn )+ h (% _% by +TbuJy ("n )+
3 all bll
g [G;T;‘T
(6)

= Cl(]y(‘xn)-l-hcllyl(‘xn)-l- h2C12y”(‘xn)+"' + hpClpyp(xn)-l-
(7

Where

T (pfl)”(pfujy"("")}

Cy=1-a, —ay

C,=l+a, -b, -1,

C,=1-a, —2b, +2,

Similarly, Taylor expanding

V() v, ) () G (e, ) S, 0(x,0)
©)

in second row of Ly (x); h] in Eq. (4) about T, gives

Simplifying Eq. (9) to get

L [y(x) h)= (1 —a, +dy )V(x )+ h(2 +a, —b, —b, )y’(xn )+
4 ay o270 ay 278 | ,

h [2! 2 +Zbu]y )+ b [P[ 2 )] )

(10)
LZ[y(x)’ h] = CZOy(xn )+ hC2ly’('xn)+ thZZy”(xn )+ ot hpC2pyp(xn)+
(11)
Where
Cy=1-a,, —ay,
Cy=2+a, —b, -,
Cy =4—a, —4D,
P p-1
€,y =2ty G2 B (12)

Equations Egs. (8) and (12) give the order condition for
the method Eq. (2).

Definition 1 cf. [3]

A block method is said to be of order p if

¢y=¢ =¢,=..=¢,=0,¢,,#0 (13)

Where ¢, is the error constant.

To determine the order of the BPDIF, substitutea,, ,
a,, and b,, into Eq. (8)
-3+7-14+3r+4-4r

C= :0
10 -3+7

C11=—3+r+13—3r+2+2r:0
-3+7
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C12=—3+r—1;3r+4—4r=0
-3+7

-3+7+1-3r+6+67
Cis = -3+

=0

Since C,, =C,, =C,, =0,C|; #0, the equation is of
order p=2.

Similarly, substitute a,,, a,, and b,, into Eq. (12)

S+t +4-4r-9+37

C 0
20 5+7

c,, =10+27—4+4r—6+6r=0
5+7

C, :10+2T—4+4T—6+6T:0
5+7

., :10+2r+2—2r—12:0

5+7
C23=40+8T_4+4T_72¢0

3(5+7)

Since C,, =C,,
order p=2.

=C,, =0,Cy #0, the equation is of

The linear systems of equations Eqs. (8) and (12) are

solved to obtain the elements of matrices A and B.

JA=3 0 ACler) 2
yn+1 _3+Tyn—l —3+T yn —3+T
(14)
_A(-1+1) 3(-3+7) 6
Yni2 541 yn—1+ 547 yn_5+Th(fn+2+1fn)
(15)

Coupling equations Egs. (14) and (15) in the form of (2),
observe

1-37 4(—1+T)

—| =3+7 -3+7
S T C3(=3+7) (16)

S5+7 S5+7

- 0
B=| —3+rT (17)
6
0
S+

2.2 Stability of the Method

The BPDIF is said to be zero stable if all the roots of the
first characteristics polynomial associated with Eq. (2),

p(¢&) has root |C|£1, t=1,2. and root |§|:l is

simple, [4].
2
5 22¢ 15¢ 97 4T
T T (a4 | (3t (5t)  (34n)(5tT) | (3+1)(5+1)  (-3+1)(5+7)
2 2
2.{ T _ 772 N 6\:12 f: 7 (18)
(=3+1)(5+1) (=3+7)(5+1)  (=3+1)(5+1)  (-3+7)(5+1)

The characteristic polynomial p(é’ ) associated with Eq.
(2)is

p(&)=4,¢ - 4

—74+2r-1°

-1, >— .
b D T e

To ensure that method (2) is zero stable, determine a range
of values for parameter 7 for which

‘—7+21—z’2
— = |«I.

—15+2r 4172

The choice of 7 in Eq. (18) that ensures that method Eq.

h( fo+ 1) (2) is zero stable exist in interval 7 € (— 1,1).

Applying BPDIF Eqg. (2) to the test equation
y'= Ay,
yields the characteristic polynomial

7(R,z)=det(RA, — 4, — zB(R + 1)) (19)
The boundary locus for some values of 7 in the region

(_ 191) is shown in Figure 1. Figurel(a) shows the stability
region for the Integration formulac Eq. (2) when

7=(0,0.9) while Figure 1(b) displays the stability region

for the values of the parameter 7 = (_ 0.9,0
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Problem 2 cf. [4]

stability region of the block method

15
The system of linear equations represented below:
" | -01 0 0 0 1
| o -10 o 0 0)-|"
\ y= 0 0 —100 0 Y where =14
0 0 0 —1000 1
— The analytic solution is
Re(Z;vg:“‘ 12 14 16 18 20
e—O.lx
Figure 1(a): stability region of BPDIF when T = 0(0)09 —10x

e
y(x)= oo for0<x<I1
e

stability region of the block method

-1000x
e

I

s The approximate solutions of problems 1-2 are generated
'é\ by the BPDIF method. The exact solutions of the problems

and the absolute error consequential to the use of the
BPDIF method are presented in the following tables.

Im(z),z=)h
=)

Tablel: The absolute error result for problem 1 using BPDIF

—_—

0 5 10 15 20 25 30

Re@) 22 X y. Exact Solution Absolute Error

Figure 1(b): stability region of BPDIF when T = —09(—09)0

0.25 » 1.805005525  0.001364753381670

The region of absolute stability in the Figurelcontains ) 2.526513988 0.003798467595267
the entire left plane of the complex plane. Hence, BPDIF Y
is A-Stable for the range of T ghogen. 05 5 1692486858  0.000929169705516
: 2.090643881  0.003643782237286
3.0 NUMERICAL EXPERIMENTS W
10 4 1577229867  0.000599187936153
In this section, the BPDIF is used to solve the following . 1.276061188 0.003362281843368
numerical problems: ¥,
20 5 1179967993  0.001286263318653
Problem 1 f. [1] : 1 0.145476270  0.002270576004271
. . J2
Oiven the  ~ nonlinear system 40 4, 0720171217 0.00147057026510
Y'= =20+ y, + 28inx "1 0617012343 -0.001350166288186
y', =998y, =999y, +999Cosx — Sinx) ¥
6.0 y 0274457993 -0.001589081746467
with initial values ] © 09651277911 -0.000225713244751
22
y,(0)=2, y,(0)=3 8.0 5 09900291719  0.000017984049149
"1 0.1448291085  0.001703997625869
The analytical solutions for the system are: ¥,
100, —0.5439303110  0.001602160734157
y,(x)=2e™ + Sinx, y,(x)=2e™ + Cosx_ 1 '1 —0.8389807292  -0.001164466199138
S2
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Table 1 highlights the error difference of the exact
solution of problem to the approximate solution
generated by BPDIF Eq. (2) forz =—-0.1.

Table 2: Absolute error for Problem 2

X Exact Solution Absolute Error
0.25 0.082084998623899 0.002637659259219
0.5 0.006737946999085 0.000298063557151
1.0 0.000045399929762 0.000003086784812

1 o T
09 exacty1 1

o BPDIF
0.8 * 2PBM ||
0.7 E‘
2 08 \.:
é 0.4 \.&
0.3 1\'%
0.2 _'%\
0.1
0
0 0.5 1 1.5 2 25

X-axis

Figure 2: Solution curve to problem 2 using BPDIF and
2PBM

The figure 2 shows the graphical behavior of the
proposed method BPDIF in comparison with the 2PBM
developed in [2] for problem 1. The BPDIF approximates
the closest to the exact solution of the problem.

4.0 CONCLUSION
In this paper, a family of 2-point parameter dependent
block integration formulae has been developed. The

proposed family of method is A-stable for? € (_ 1’1) and
performs creditably when compared to existing method
in the literature.
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